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Acconmpanying Note

An approximation technique for small

noise open loop control problems

This paper is concerned with the development of an
approximation technique for the solution of a class of fixed

stopping time small noise open loop control problems. These

problems arise by adding an additive white noise term with a

small coefficient (25)%1 to the system equations in the

deterministic control problem.

An approximation scheme is developed that has the advantage

that one finds approximately optimal controls simultaneously

for all sufficiently small €. The scheme requires the solution

of a generalized linear regulator problem which is solvable

easily numerically. The numerical method is given and an

example illustrating the efficiency of the method is also

presented.
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1. Introduction

~ This paper is concerned with the development of an approxi-
mation technique for the solution of a class of fixed stopping
tine small noise open loop control problems. These problems
arise by adding an additive white noise term with a small

L ; il v
coefficient (2¢)™“I to the system eqguations in the deterministic
control problemn.

In earlier work [4] we derived expansions of class ™

in ¢ of the optimal open_loop cost and control for a very
special class of problems in which each open loop generated
a nondegenerate Gaussian process. This property allowed the
conversion of the stochastic control problem into an equivalent

. - deterministic control problem. Under less restrictive assumptions

in | ] we were able to derive a truncated expansion of the

optimal cost, but were unable to theoretically estaplish an

expansion of the optimal cost.

Motivated by these previous results, we consider more
general open loop control problems in which each open loop
control does not necessarily generate a Gaussian process and
attempt to find "best" controls of the form U® + eV. Here the
function U® denotes the optimal open loop deterministic control.
This approximation scheme has the advantage that one finds
approxinately optimal controls simultaneously for all sufficiently
stall €. This scheme leads to the selection of a control
(3

U~ + eV which performs better (or at least as well) than u®

in the € problem for all sufficiently small €. The approxi- ?




nation technique for the calculation of V leads to a generalized

linggg regulator problem which can be solved easily numerically.
This scheme is superior to and does not agree with the standard
secondary extremal problem as is shown in §4.

Other work on small noise problems incluces the completely
observable work of Fleming [1]. Other approaches to open
loop control problems include !Mortensen [ 5 ] and VanSlyke and

wWets [6 ].

2. The probleun. Suppose that the state ¢£(t) evolves according

to the stochastic differential equations
(1) dE = £(t,E(t),U(t))dt + (2€) *Idw(t)

where w 1is n dimensional Brownian notion, and with initial
condition &(so) = X5, Q@ constant in R®. In (1) U is a
control with values in the control set K = Rk. We seek to
rininize

'll
(2) J() = u{f L(£,§ () ,U(t))dE[E(S)) = x4}

So

over the class of open loop controls %. An open loop control
U «¢% 1is a Borel measurable function on [so,T] with values in

K.

Let Q = [so,T] x RT, Throughout we assume the following:

(i) The initial point (so,xo) is a fixed constant in

+ . ¢ :
K l, and is known to the controller. There exists a unique

optimal open loop control U® for the deterministic control
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problem (1),

(2) with € = 0.

(1) £(t,x,u) = A(t,x) + B(t)u with A, B smooth

functions.

(iii} &L

"

such that v*Luu(s,x,u)v > C|v|2 for all (s,x,u).
Concerning (ii), see the rewarks in §4.
The determination of the optimal control U® for the
¢ problem, even nunecrically, is inpossible in general and one

seeks approxinations to U~ . We propose nere such a schene.

o

Let U denote the optimal determninistic open loop control

corresponding
mation scheme

Let JC

used in (1).

contained in [ 2! and follows the nethod of §4 in [3 }.

Theorem l. For each Holder continuous function V,

-JE ™)

where x 1is independent of V ana T (V) is given by

') =

(3)

Here £°(t)

terministic control problem with initial condition E(so) = x

= %% + ex + 2T (V) + o(e?)

is the optimal trajectory for the open loop de-

is a snooth function and there exists C0 >0

€

to starting at (so,xo). We seek a "best" approxi-

€ = UU + gV.

of the form V
denote the cost function in (2) when € = & is

Then we have the following result whose proof is

LA

i

f [0, (£,£°(8) ,VIB(E)V(E) + 8,0(t,E°(¢),V)
S
0

L o (o]
+ 3 vieIL (£,6%(6) 0% (£))V(t) Jat.

0

7
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and ¢(s,x,V) satisfies

0, (8,%,V) + & (s,x,V)E(s,x,U%(s)) + 8,47 (s,x)
(4)
+ Ly (s,%,U%(8)) + ¥ (s, x)B(£)}V(s) = 0

1
4 on [so,TJ x R with terminal condition ¢(T,x) = 0. The
i function y°(t,x) satisfies
|
| (5) 8, + uof(e,x,U°%(e)) + ¥Q + L(t,x,U°%(t)) =0
1
with terminal condition wo(T,x) = 0.

renark. wo(t,x) is the cost of starting at (t,x), t > Sgr
and using the open loop control u° corresponding to the initial
point (SO'XO)' Note that the notational dependence of ¢ on
V  only indicates that for a fixed function V, ¢ satisfies a
r linear partial differential equation depending upon V.

bince ¥ 1is independent of the choice of the HOlder
continuous function V, let us attempt to choose V so as to

minimize the quantity T (V). This will be considered the "best"

approximate control.

3. Solution of the T (V) control problem.

The nminimization of T[I'(V) can be formulated as a deterministic
control problem, in fact, of a generalized linear regulator type.
Below, in Corollary 1 we prescribe an explicit scheme for the

calculation of the minimizing V.

VTR T il s




Define g;(t) = ¢, (£,E°(t),V), hy(t) = ¢xixj(t,€°(t).V).

3
and -let 4¢(t) = (gl(t),...,gn(t))', h(t) = (hll(t),...,hln(t),...,h
Since @x (t,x,V) satisfies

a

(o] (]
(Qxi)t(t,x,V) + ¢xxi(t,x,V)f(t,x.U (£)) + ¢x(trer)fxi(t'x'U (t))
(6)

+(A,¥0)  (£,x) + {L . (£,%x,0°(E)) + ¥O  (t,x)B(£)}V(E) = 0

3 i i
with wx (P, V) = 0, Ethen gi(t) satisfies
i
~ dg. (t)
! 1 = ' o (2 5 le) o
at = fx.(t.ﬂ (t) ,U (t))g(t) + (AXW )x_(t,ﬁ (t))

& P

(7)

+ i (6T A0 + o, (R ER R IBIE) VL)
i

uxl
with gi(T) = 0, L = 3,cvi,e  Samdilarly Qx st (t,x,V) satisfies
173
. c O
(b x ) (ERV) 0 o (£ VI E(EX,UP(0)) + 0 (6, V) E, o (£,%,07(8))
b il 157 1]

= (o) o
8+t SR L e R e, ettt

o (o) (o] =
ALY (ex) + L (X, UT(R)) + Yo (E,X)B(E)IV(E) =0
X ) 1]

with boundary condition ¢x 2 (r,x,V) = 0, hence
i%]




e
t
=3

n
—de— = ] b (6VE, (t,6°%(6),u°%(8)) + ] nE (£,£°%(8),U°(8))
E 2t k=1

1 i i xj

(9) v gt (e)g, . (6,870 % () ¢ (A0 (£.2%(e))

)| 13

-0 O O o
+ {Lux.x.(t'g (£),07(e)) + ¥ _ . (&, (£))B(t) }V(t)

b Sy +7

with final condition hij(T) = 0. The cost function becomes

i n
(10) J4(V) = { J ho.(t) + g'(£)B(E)V (L) +
Jso 1=1 B

| 3 VL (6,:%0), v e)veat.

Thus we now have a deterministic control problem with state
equations (7), (9) with control function V and cost function
(10) . Time now runs backwards, that is, we prescribe h and g

at the final time T, but the functions g and h are un-

specified at time So° The quantities thx (tIEO(t)) i
s
‘ Vi %. & (t,Co(t)) can be found easily using the method of

K 2]

characteristics once Uo(t) is known. One simply repeats the

o

. procedure on Y used in deriving equations (7) and (9).

O

We now formulate a generalized linear regulator problemn

for

dgfn

z(t) (gll'.'gnl hlll'.'hlnl"'hnl""hnn) (T_t)'

(Of course, hij = hji sO0 in actual numerical computation some

of the terms may be eliminated.) +“he equations for 2z can be

- - o ——————




written in the form

(11) =< =p.z + D

ac 1 ¥ + E,

z(0) = 0, with cost function,

G
(12) JS(W) = f K'z + zTRw +e wTdet

N[

for ayvropriate matrices Dl’ D2, R, Q (R, Q symnmetric) and

vectors E, K, and control function wi(t) = V(T=t).

Thilis problewm can be solved using dynamic programming. Let
¢(t,z) Dbe the optimal cost corresponding to the control problem
(11), (12) but with initial condition 2z(t) = 2z instead of

z(0) = 0. Then ¢ satisfies the llamilton-Jacobi equation

T

35 QZD 2 b ¢ZE +. K2

s 1
3

1 min[(@zuz i zTR)w + % wTQw] = 0.

w

The winimun in (13) is obtained when

(14) w= -0 t[o,D, + 2 rT

hence (13) can be written as
¢p + 9,(Dyz + E) + (K'z)
- %—(q;zu2 - zTR)Q"l(q,zo2 + zR) T = 0.
This equation has the solution

(16) ¢(t,2) = % zTP(t)z + rT(t)z + g(t)




' e T 1 .. =17 1.7 .~17
2P B D1 RQ "R 2PD‘?Q D2P
-rg"p = 0,
(r')T + rTDl + KT
-rTp. 0 1p%p - TpTo IrT = ¢
2 2 2 i
. B o ALl
gl Pl 2rD202D2r 0,
and with initial conditions
q(0) =0, r'(0) =0, P(0) =

Using (1l4) one obtains that the optimal feedback control is

(17) W(t,z) = - '[ojr + DIp

Therefore we have the following

Corollary 1. The function

(18) v(t) = w(T-t, 2°(T-t))
where zo(t) is the solution to (11l) with w
z2(0) = 0.
4. Conclusions.
Exanple 1. Consider scalar equations
dE(t) = U(t)dt + (ze)%dw(t),
i - PRSP e - A T .= 3, E VST WIS A

V* (t)

Zok RTz].

0.

minimizing

is given by
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£(0) = 0, and cost function
1 S gl ekl (SR | 2
Bl L(E(e)™ + E{x))" + RUE)™ + 5 U(t)“]dt.
0
This problem is actually of the type considered in [ 4], but
let us use the nethods of the paper to determine the optimal

3

V%, Since U2 = o, Ehen U0t = (1=t} {x" + 2%° + %) and

the deterministic control problem for V 1is the following.

1
Mininize J hll(t) + gl(t)V(t) + Vz(ddt with state eguations
0
dg, (t) ) -
= L2i(l=t) + 4(1-E}Vi(Et), gl(l) =0,
dnyq (%)
at =124 (1=t =i 201-E)NV(E) , hll(l) = 0,

over the class of open loop controls V(t). Rather than use
the procedure of Section 3, we use Pontryagin's maximum principle

to determine V. V 1is determined from the equation
Vit) + gl(t) * 4pl(t)(l-t) ar 12p2(t)(1—t) = 9
where pl(t) and pz(t) are the costate variables which satisfy

dpl(t)
g - =V(t), Pl(O) =0,

and

dp, (t)
T S RV B

|




It is easily verified that V(t) = -3(l-(sech 2)cosh 2t)

satisfies the above equations. Recall that vE = ¢° + ev

is then the best approximate control. The costs of using vE

and U° in the g-problem for various € are listed in Table 1.
€ Cost Using u® Cost Using V© -
Cost Using u®

0 0 0
.04 .0864 —. 00232
.08 .1856 -.00714
B2 .2976 -.011946
.16 .4224 =501375
.20 .56 =<00952
.24 .7104 .00388
.40 1.44 .21644
.80 4.16 3.20844

1.00 6 _ 7.08288

Table 1

For ¢ = +.12 the use of V° realizes an approximately 4%

decrease in cost over the cost of using u®. However, note that

as ¢ 1increases, the use of v® realizes more cost than using

U0 in the e-problem.




Rerniark. The "best" control approximation technique 1s admittedly
complex. In partial justification for such a complex scheme,
let.ﬁs show that a less complicated scheme - an accessory
stochastic control problem similar to that for the determ.nistic
control problem by | 7] yields a trivial and unusable solution.

Consider linear state equations of the form

dg(t) = A(t)E(t) + B(t)U(t)de + (2¢) 'Idw, £(s,) = x
vty € Rk, with cost function L. Define x(t) = E(t) = £ (t),
Vit = Ufe) - Uo(t), then x(t) satisfies the equation

2
dx = A(t)x + B(t)V(t)dt + (2¢) ‘dw, x(so) = 0, with cost function

B L(t,e(0),0(8) - Lt,6%(0),u%(e))dt.  Since
0
I+
B L (,508),U(0)) (2(8)=g7(8) + L, (£,£°(8),u°(£)) (u(e) - v°(e))at = o,
S
0

then the new cost function can be approximated by

o o
T Ixx  xu

LJ (x(t),V(t)) (x(t),v(t))'adt
So L°  L°
ux uu

where the i

indicates evaluation along (t,Co(t),Uo(t)). If
the matrix of partial derivatives of L is positive definite,
then this approximate control problem is minimized by the choice
V(t) = 0 since x(so) = 0. Thus this linearization technique to
compute a correction factor yields zero correction. However,

Example 1 was of the above type and a correction term yielded a

lower cost than using u® for sufficiently small Ee.
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Remark. The approximation technique described in this chapter

can also be used if B = B(t,x). llowever, the equations for

g(t), h(t) are complicated slightly by the addition of terms
; involving the x-partial derivatives of B evaluated along

(t,£%(t)).

Remark. The original work on the problem was done in an un-

published part of the author's dissertation [2 ]. Recently,

we have discovered the convenient solution to the auxiliary
! minimization problem which was lacking in [ 21, and which

make the auxiliary problem tractable for large scale systems.
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